Redefining the standard of dosemeters –
easy to use and compatible with networks

UNIDOS webline
High quality Reference Class Dosemeter
for radiation therapy, diagnostic radiology
and health physics.
Set your UNIDOS® webline tailored to meet your requirements. Menu-prompting with navigation knob and help system makes this easy for you. All measuring functions are triggered by pushbuttons.

All important data is available at a glance. The large TFT display shows all required information in a clearly structured fashion, and it is visible even at a distance or from wide viewing angles.
Integrate your UNIDOSwebline into your LAN to control the measurement equipment remotely from every PC in the network or to send status reports via e-mail.

Rely on the standard of dosemeters accepted worldwide. UNIDOSwebline surpasses most requirements by far for reference class dosemeters according to IEC 60731 and the IPEM secondary standard dosemeter guidelines.
The UNIDOS is well known and accepted world-wide as the dosemeter of choice with the best performance available on the market. The new UNIDOSwebline sets another milestone in dosimetry. It is a high-precision, secondary standard reference class dosemeter combined with modern network features. The Ethernet interface based on the TCP/IP protocol makes it possible to integrate the UNIDOSwebline in a LAN for remote access and e-mail capability. Its large, user-configurable color TFT display guarantees visibility from wide angles. Chamber data are stored in a comprehensive chamber library. Air density is corrected by keying in air pressure and temperature or by means of radioactive check devices. The check device data are stored in a database. An internal clock calculates the isotope radioactivity decay.

Technical Overview

- **Resolution:** 1 fA
- **Measuring range:** 200 fA ... 2.5 µA

Complete detector information for more than 50 detectors, stored in the database.

- Air density correction method \(t \) & \(p \) or \(k_p \) & \(k_m \). Different correction factors can be entered for every detector.

- Navigation knob for fast, convenient handling.

- Configurable TFT display. Shows dose and dose rate simultaneously or only one of both values. Radiological units: Gy, Gy/min, Sv, Sv/h, H*(10), R, R/min, Gy · cm, Bq, Ci or electrical units: A, C.

- Bar graph for dose rate display.

- Bar graph for dose rate display.
Redefining the standard of dosemeters:

- **Ease of use**
 - Active, configurable TFT display.
 - Large measuring display easily visible from great distances and wide viewing angles.
 - Easy and fast menu-driven handling with navigation knob and help texts.

- **Network compatibility**
 - Integration in a LAN with the internet standard TCP/IP.
 - Operation, measuring data acquisition and communication from every VNC client in the network via TCP/IP interface.
 - Extensive self-test routines with the possibility to e-mail status reports.

- **Classification**
 - Highest classification in all applications (radiation therapy, diagnostic radiology, health physics).
 - Surpasses the requirements for reference class dosemeters according to IEC 60731, the IPEM secondary standard dosemeter guidelines, IEC 61674 for diagnostic radiology and IEC 60846 for health physics.

Measuring ranges:
- **Charge**: 2 pC ... 9 C
- **Current**: 200 fA ... 2.5 µA
- **Resolution**:
 - **Charge**: 10 fC
 - **Current**: 1 fA
- **Long-term stability**: < ± 0.5 % p.a.
- **Non-linearity**: < ± 0.5 % according to IEC
- **Leakage current**: < ± 1 fA
- **Amplifier zeroing**: Automatically within approx. 75 s
- **Chamber voltage**: (0 ... ± 400) V in 1 V increments
- **Interfaces**
 - IEEE802 (TCP/IP), RS232
- **Power supply**
 - Both mains and battery operation (85 ... 265) VAC, (50 ... 60) Hz resp.
 - rechargeable batteries AA (NiMH)
- **Dimensions**
 - (H x W x D): 152 mm x 257 mm x 262 mm
- **Weight**: Approx. 5.8 kg, 12.8 lbs

Comprehensive statistic and data logging function with 3 operation modes (manual, signal-controlled or time controlled).
Up to 100 measuring values are stored in a list. The data can be reviewed and exported. Mean value and relative standard deviation are displayed on the measuring screen.

Radiation Therapy
- Easy to use menu-prompting system with help texts. Important settings can be password protected (different levels).
- Language selectable

Diagnostic Radiology
- Detector signal input. Connector types: BNT, TNC or M.
- High voltage adjustable up to ± 400 V in increments of 1 V

Health Physics
- Rechargeable batteries with built-in charging station
- External high voltage input for chamber voltage > 400 V
- Trip output
- Ethernet Interface (TCP/IP)
- RS232 for serial data communication

Detector signal input. Connector types: BNT, TNC or M.

- High voltage adjustable up to ± 400 V in increments of 1 V

.. image:: Ports.png
 :alt: Ports diagram
Versatile dosemeters

PTW Therapy Dosemeters and Electrometers

- High quality reference class dosemeter for radiation therapy, diagnostic radiology and health physics
- Integration in a LAN with the Internet standard TCP/IP
- Remote access function
- Active, configurable TFT display with wide viewing angles
- Navigation knob for fast and comfortable handling

UNIDOS
- High quality reference class dosemeter for radiation therapy, diagnostic radiology and health physics
- Suitable for use in patient environments
- Simultaneous measurement of dose and dose rate

UNIDOS E
- High quality reference class dosemeter for radiation therapy, diagnostic radiology and health physics
- Easy to use
- Simultaneous measurement of dose and dose rate
TANDEM
- Fast field class dual channel electrometer for radiation therapy and for TBA systems
- Absolute dose measurement with TanSoft software
- Resolution 10 fA, time constant 10 ms

MULTIDOS
- Field class multi channel dosemeter for radiation therapy
- Suitable for use in patient environments
- Multiple applications (absolute dosimetry, quality control, in-vivo dosimetry)

VIVODOS
- Multi channel dosemeter for in-vivo dosimetry
- For use in patient environments
- Connects up to twelve semiconductor detectors

VIVODOS E
- Multi channel dosemeter for in-vivo dosimetry
- For use in patient environments
- Connects up to 4 semiconductor detectors

OPTIDOS
- Brachytherapy dosemeter with scintillation detector
- For quality control in intravascular brachytherapy and for dosimetry of ophthalmic radiation sources
- Small water equivalent plastic scintillation detector

UNIDOS atto
- Highly sensitive electrometer
- For calibration laboratories and research (not a medical device)
- Resolution 0.01 fA

Dosemeter Accessories
- Radiation detectors
- Connection cables
- Radioactive check devices
- Electrical check device UNITEST
- Carrying cases
- Water, water equivalent and acrylic phantoms